育路高考網,提供查院校、選專業、填志愿,高考擇校路線規劃服務
微信小程序
高校招生小程序

快速擇校

微信公眾號
高校招生公眾號

政策解讀

010-51291557

客服熱線 : 8:00-20:00

2016高考數學提分專練及答案:直線與圓的概念

2016-09-23 11:14:30 來源:考試吧

  一、選擇題

  1.平行四邊形ABCD的一條對角線固定在A(3,-1),C(2,-3)兩點,點D在直線3x-y+1=0上移動,則點B的軌跡方程為(  )

  A.3x-y-20=0 B.3x-y+10=0

  C.3x-y-9=0 D.3x-y-12=0

  答案:A 解題思路:設AC的中點為O,即.設B(x,y)關于點O的對稱點為(x0,y0),即D(x0,y0),則由3x0-y0+1=0,得3x-y-20=0.

  2.由直線y=x+1上的一點向圓(x-3)2+y2=1引切線,則切線長的最小值為(  )

  A.1 B.2

  C. -2D.3

  答案:C 解題思路:當該點是過圓心向直線引的垂線的交點時,切線長最小.因圓心(3,0)到直線的距離為d==2,所以切線長的最小值是l==.

  3.直線y=x+b與曲線x=有且只有一個交點,則b的取值范圍是(  )

  A.{b||b|=}

  B.{b|-1

  C.{b|-1≤b<1}

  D.非以上答案

  答案:

  B 解題思路:在同一坐標系中,畫出y=x+b與曲線x=(就是x2+y2=1,x≥0)的圖象,如圖所示,相切時b=-,其他位置符合條件時需-1

  4.若圓C:x2+y2+2x-4y+3=0關于直線2ax+by+6=0對稱,則由點(a,b)向圓所作的切線長的最小值是(  )

  A.2 B.3

  C.4 D.6

  答案:C 解題思路:圓的標準方程為(x+1)2+(y-2)2=2,所以圓心為(-1,2),半徑為.因為圓關于直線2ax+by+6=0對稱,所以圓心在直線2ax+by+6=0上,所以-2a+2b+6=0,即b=a-3,點(a,b)到圓心的距離為

  d==

  ==.

  所以當a=2時,d有最小值=3,此時切線長最小,為==4,故選C.

  5.已知動點P到兩定點A,B的距離和為8,且|AB|=4,線段AB的中點為O,過點O的所有直線與點P的軌跡相交而形成的線段中,長度為整數的有(  )

  A.5條 B.6條

  C.7條 D.8條

  答案:D 命題立意:本題考查橢圓的定義與性質,難度中等.

  解題思路:依題意,動點P的軌跡是以A,B為焦點,長軸長是8,短軸長是2=4的橢圓.注意到經過該橢圓的中心O的最短弦長等于4,最長弦長是8,因此過點O的所有直線與點P的軌跡相交而形成的線段中,長度可以為整數4,5,6,7,8,其中長度為4,8的各一條,長度為5,6,7的各有兩條,因此滿足題意的弦共有8條,故選D.

  6.設m,nR,若直線(m+1)x+(n+1)y-2=0與圓(x-1)2+(y-1)2=1相切,則m+n的取值范圍是(  )

  A.[1-,1+]

  B.(-∞,1-][1+,+∞)

  C.[2-2,2+2]

  D.(-∞,2-2][2+2,+∞)

  答案:D 解題思路: 直線與圓相切,

  =1,

  |m+n|=,

  即mn=m+n+1,

  設m+n=t,則mn≤2=,

  t+1≤, t2-4t-4≥0,

  解得:t≤2-2或t≥2+2.

  7.在平面直角坐標系xOy中,設A,B,C是圓x2+y2=1上相異三點,若存在正實數λ,μ,使得=λ+μ,則λ2+(μ-3)2的取值范圍是(  )

  A.[0,+∞) B.(2,+∞)

  C.(2,8) D.(8,+∞)

  答案:B 解題思路:依題意B,O,C三點不可能在同一直線上, ·=||||cos BOC=cos BOC∈(-1,1),又由=λ+μ,得λ=-μ,于是λ2=1+μ2-2μ·,記f(μ)=λ2+(μ-3)2.則f(μ)=1+μ2-2μ·+(μ-3)2=2μ2-6μ-2μ·+10,可知f(μ)>2μ2-8μ+10=2(μ-2)2+2≥2,且f(μ)<2μ2-4μ+10=2(μ-1)2+8無最大值,故λ2+(μ-3)2的取值范圍為(2,+∞).

  8.已知圓C:x2+y2=1,點P(x0,y0)在直線x-y-2=0上,O為坐標原點,若圓C上存在一點Q,使得OPQ=30°,則x0的取值范圍是(  )

  A.[-1,1] B.[0,1]

  C.[-2,2] D.[0,2]

  答案:D 解析:由題知,在OPQ中,=,即=, |OP|≤2,又P(x0,x0-2),則x+(x0-2)2≤4,解得x0[0,2],故選D.

  9.過點P(1,1)的直線,將圓形區域{(x,y)|x2+y2≤4}分成兩部分,使得這兩部分的面積之差最大,則該直線的方程為(  )

  A.x+y-2=0 B.y-1=0

  C.x-y=0 D.x+3y-4=0

  答案:A 命題立意:本題考查直線、線性規劃與圓的綜合運用及數形結合思想,難度中等.

  解題思路:要使直線將圓形區域分成兩部分的面積之差最大,必須使過點P的圓的弦長達到最小,所以需該直線與直線OP垂直.又已知點P(1,1),則kOP=1,故所求直線的斜率為-1.又所求直線過點P(1,1),故由點斜式得,所求直線的方程為y-1=-(x-1),即x+y-2=0.

  10.直線y=kx+3與圓(x-2)2+(y-3)2=4相交于M,N兩點,若|MN|≥2,則k的取值范圍是(  )

  A. B.

  C.[-, ] D.

  答案:B 命題立意:本題考查直線與圓的位置關系,難度中等.

  解題思路:在由弦心距d、半徑r和半弦長|MN|構成的直角三角形中,由勾股定理,得|MN|=≥,得4-d2≥3,解得d2≤1,又d==,解得k2≤,所以-≤k≤.

  (責任編輯:盧雁明)

 1/4    1 2 3 4 下一頁 尾頁

  特別說明:由于各省份高考政策等信息的不斷調整與變化,育路高考網所提供的所有考試信息僅供考生及家長參考,敬請考生及家長以權威部門公布的正式信息為準。

高考專業報名咨詢
  • 意向專業:
  • 學生姓名:
  • 聯系電話:
  • 出生日期:
  • 您的問題:
  • 《隱私保障》

高考低分擇校動態

免費咨詢

在線咨詢
錄取幾率測評
掃碼關注
官方微信公眾號

官方微信公眾號

電話咨詢
聯系電話
010-51291557
返回頂部
亚洲中国久久精品无码,国产大屁股视频免费区,一区二区三区国产亚洲综合,国产AV无码专区毛片
亚洲精品青青操久久 | 这里有亚洲精品在线 | 亚洲欧美在线中文字幕不卡 | 久久精品亚洲精品艾草网 | 亚洲专区日本专区 | 一级爱做片免费观看久久 |