高一數學:對數函數及其性質練習題
1.若loga2<1,則實數a的取值范圍是( )
A.(1,2) B.(0,1)∪(2,+∞)
C.(0,1)∪(1,2) D.(0,12)
解析:選B.當a>1時,loga2
2.若loga2
A.0
C.a>b>1 D.b>a>1
解析:選B.∵loga2
∴0
3.已知函數f(x)=2log12x的值域為[-1,1],則函數f(x)的定義域是( )
A.[22,2] B.[-1,1]
C.[12,2] D.(-∞,22]∪[2,+∞)
解析:選A.函數f(x)=2log12x在(0,+∞)上為減函數,則-1≤2log12x≤1,可得-12≤log12x≤12,X k b 1 . c o m
解得22≤x≤2.
4.若函數f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為( )
A.14 B.12
C.2 D.4
解析:選B.當a>1時,a+loga2+1=a,loga2=-1,a=12,與a>1矛盾;
當0
loga2=-1,a=12.
5.函數f(x)=loga[(a-1)x+1]在定義域上( )
A.是增函數 B.是減函數
C.先增后減 D.先減后增
解析:選A.當a>1時,y=logat為增函數,t=(a-1)x+1為增函數,∴f(x)=loga[(a-1)x+1]為增函數;當0
∴f(x)=loga[(a-1)x+1]為增函數.
6.(2009年高考全國卷Ⅱ)設a=lge,b=(lg e)2,c=lg e,則( )
A.a>b>c B.a>c>b
C.c>a>b D.c>b>a
解析:選B.∵1
∴0
∵0
又c-b=12lg e-(lg e)2=12lg e(1-2lg e)
=12lg e•lg10e2>0,∴c>b,故選B.
7.已知0
解析:∵0
又∵0
答案:3
8.f(x)=log21+xa-x的圖象關于原點對稱,則實數a的值為________.
解析:由圖象關于原點對稱可知函數為奇函數,
所以f(-x)+f(x)=0,即
log21-xa+x+log21+xa-x=0⇒log21-x2a2-x2=0=log21,
所以1-x2a2-x2=1⇒a=1(負根舍去).
答案:1
9.函數y=logax在[2,+∞)上恒有|y|>1,則a取值范圍是________.
解析:若a>1,x∈[2,+∞),|y|=logax≥loga2,即loga2>1,∴1
答案:12
10.已知f(x)=6-ax-4ax<1logax x≥1是R上的增函數,求a的取值范圍.
解:f(x)是R上的增函數,
則當x≥1時,y=logax是增函數,
∴a>1.
又當x<1時,函數y=(6-a)x-4a是增函數.
∴6-a>0,∴a<6.
又(6-a)×1-4a≤loga1,得a≥65.
∴65≤a<6.
綜上所述,65≤a<6.
11.解下列不等式.
(1)log2(2x+3)>log2(5x-6);
(2)logx12>1.
解:(1)原不等式等價于2x+3>05x-6>02x+3>5x-6,
解得65
所以原不等式的解集為(65,3).
(2)∵logx12>1⇔log212log2x>1⇔1+1log2x<0
⇔log2x+1log2x<0⇔-1
⇔2-1
∴原不等式的解集為(12,1).
12.函數f(x)=log12(3x2-ax+5)在[-1,+∞)上是減函數,求實數a的取值范圍.
解:令t=3x2-ax+5,則y=log12t在[-1,+∞)上單調遞減,故t=3x2-ax+5在[-1,+∞)單調遞增,且t>0(即當x=-1時t>0).
因為t=3x2-ax+5的對稱軸為x=a6,所以a6≤-18+a>0⇒a≤-6a>-8⇒-8
(責任編輯:張新革)
分享“高一數學:對數函數及其性質練習題”到: