高一數(shù)學:必修知識點立體幾何初步4
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質(zhì)定理
①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。
性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。
性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。
8、空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規(guī)定為。
②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規(guī)定為。
②平面的垂線與平面所成的角:規(guī)定為。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。
在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,
解題時,注意挖掘題設中兩個信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
9、空間直角坐標系
(1)定義:如圖,是單位正方體.以A為原點,分別以OD,O,OB的方向為正方向,
建立三條數(shù)軸。這時建立了一個空間直角坐標系Oxyz.
1)O叫做坐標原點2)x軸,y軸,z軸叫做坐標軸.3)過每兩個坐標軸的平面叫做坐標面。
(2)右手表示法:令右手大拇指、食指和中指相互垂直時,可能形成的位置。大拇指指向為x軸正方向,食指指向為y軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。
(3)任意點坐標表示:空間一點M的坐標可以用有序實數(shù)組來表示,有序實數(shù)組叫做點M在此空間直角坐標系中的坐標,記作(x叫做點M的橫坐標,y叫做點M的縱坐標,z叫做點M的豎坐標)
(責任編輯:康彥林)
分享“高一數(shù)學:必修知識點立體幾何初步4”到: