高二數(shù)學(xué)圓的方程知識點(diǎn)
圓的方程知識點(diǎn)
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。
2、圓的方程
(1)標(biāo)準(zhǔn)方程 ,圓心o ,半徑為r;
(2)一般方程
當(dāng) 時,方程表示圓,此時圓心為 ,半徑為
當(dāng) 時,表示一個點(diǎn); 當(dāng) 時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線 ,圓 ,圓心 到l的距離為 ,則有 ; ;
(2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設(shè)圓 ,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當(dāng) 時兩圓外離,此時有公切線四條;
當(dāng) 時兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng) 時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng) 時,兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;
當(dāng) 時,兩圓內(nèi)含; 當(dāng) 時,為同心圓。
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
(責(zé)任編輯:彭海芝)
分享“高二數(shù)學(xué)圓的方程知識點(diǎn)”到:
- 高二數(shù)學(xué) 知識點(diǎn)的總結(jié)。
- 高二數(shù)學(xué)學(xué)習(xí)方法的八大法則。
- 如何學(xué)好高二的數(shù)學(xué)課門呢?
- 高二數(shù)學(xué)學(xué)習(xí)方法的匯總。
- 數(shù)學(xué)從高二墊底到高考138分,她的成績是
- 高二數(shù)學(xué) 復(fù)習(xí)的3種重要方法
- 高二數(shù)學(xué) 學(xué)習(xí)的方法以及技巧
- 高二數(shù)學(xué)學(xué)法:精選高二數(shù)學(xué)輕松高效學(xué)
- 高二數(shù)學(xué)學(xué)法:高二數(shù)學(xué)學(xué)習(xí)問題自我評
- 數(shù)學(xué)高二知識點(diǎn):簡單隨機(jī)抽樣