數(shù)學(xué)高二解題技巧:換元法講解

2017-03-12 07:39:42 來源:精品學(xué)習(xí)網(wǎng)

   換元的思想和方法,在數(shù)學(xué)中有著廣泛的應(yīng)用,靈活運(yùn)用換元法解題,有助于數(shù)量關(guān)系明朗化,考試技巧,變繁為簡,化難為易,給出簡便、巧妙的解答。

  在解題過程中,把題中某一式子如f(x),作為新的變量y或者把題中某一變量如x,用新變量t的式子如g(t)替換,即通過令f(x)=y或x=g(t)進(jìn)行變量代換,得到結(jié)構(gòu)簡單便于求解的新解題方法,通常稱為換元法或變量代換法。

  用換元法解題,關(guān)鍵在于根據(jù)問題的結(jié)構(gòu)特征,選擇能以簡馭繁,化難為易的代換f(x)=y或x=g(t)。就換元的具體形式而論,是多種多樣的,常用的有有理式代換,根式代換,指數(shù)式代換,對(duì)數(shù)式代換,三角式代換,反三角式代換,復(fù)變量代換等,宜在解題實(shí)踐中不斷總結(jié)經(jīng)驗(yàn),掌握有關(guān)的技巧。

  例如,用于求解代數(shù)問題的三角代換,在具體設(shè)計(jì)時(shí),宜遵循以下原則:(1)全面考慮三角函數(shù)的定義域、值域和有關(guān)的公式、性質(zhì);(2)力求減少變量的個(gè)數(shù),使問題結(jié)構(gòu)簡單化;(3)便于借助已知三角公式,建立變量間的內(nèi)在聯(lián)系。只有全面考慮以上原則,才能謀取恰當(dāng)?shù)娜谴鷵Q。

  換元法是一種重要的數(shù)學(xué)方法,在多項(xiàng)式的因式分解,代數(shù)式的化簡計(jì)算,恒等式、條件等式或不等式的證明,方程、方程組、不等式、不等式組或混合組的求解,函數(shù)表達(dá)式、定義域、值域或最值的推求,以及解析幾何中的坐標(biāo)替換,普通方程與參數(shù)方程、極坐標(biāo)方程的互化等問題中,都有著廣泛的應(yīng)用。

  (責(zé)任編輯:彭海芝)

分享“數(shù)學(xué)高二解題技巧:換元法講解”到:

58.4K

網(wǎng)站地圖

關(guān)注高考招生官微
獲取更多招生信息
高校招生微信
亚洲中国久久精品无码,国产大屁股视频免费区,一区二区三区国产亚洲综合,国产AV无码专区毛片
欧洲国产伦久久久久久久 | 在线观看领导玩丰满美女 | 中文字幕高清视频在线不卡 | 中文字幕永久在线中文免费 | 中文字幕日韩一区二区三区不卡 | 亚洲成高清日本亚洲成高清 |