名師指導(dǎo):高考數(shù)學(xué)抽象函數(shù)求解技巧

2017-05-20 05:48:40 來源:精品學(xué)習(xí)網(wǎng)

  "名師指導(dǎo):高考數(shù)學(xué)抽象函數(shù)求解技巧"一文由育路編輯整理,更多精選內(nèi)容請關(guān)注育路網(wǎng)!

  函數(shù)是每年高考的熱點,而抽象函數(shù)性質(zhì)的運(yùn)用又是函數(shù)的難點之一。抽象函數(shù)是指沒有給出具體的函數(shù)解析式或圖像,但給出了函數(shù)滿足的一部分性質(zhì)或運(yùn)算法則。此類函數(shù)試題既能全面地考查學(xué)生對函數(shù)概念的理解及性質(zhì)的代數(shù)推理和論證能力,又能綜合考查學(xué)生對數(shù)學(xué)符號語言的理解和接受能力,以及對一般和特殊關(guān)系的認(rèn)識。因此備受命題者的青睞,在近幾年的高考試題中不斷地出現(xiàn)。然而,由于這類問題本身的抽象性和其性質(zhì)的隱蔽性,大多數(shù)學(xué)生在解決這類問題時,感到束手無策。下面通過例題來探討這類問題的求解策略。

  例:設(shè)y=蕊(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:

  (i)f(-1)=f(1)=0;

  (ii)對任意的u,v∈[-1,1],都有—f(u)-f(v)—≤—u-v—。

  (Ⅰ)證明:對任意的x∈[-1,1],都有x-1≤f(x)≤1-x;

  (Ⅱ)證明:對任意的u,v∈[-1,1],都有—f(u)-f(v)—≤1。

  解題:

  (Ⅰ)證明:由題設(shè)條件可知,當(dāng)x∈[-1,1]時,有f(x)=f(x)-f(1)≤—x-1—=1-x,即x-1≤f(x)≤1-x.

  (Ⅱ)證明:對任意的u,v∈[-1,1],當(dāng)—u-v—≤1時,有—f(u)-f(v)—≤1

  當(dāng)—u-v—>1,u·v<0,不妨設(shè)u<0,則v>0且v-u>1,其中v∈(0,1],u∈[-1,0)

  要想使已知條件起到作用,須在[-1,0)上取一點,使之與u配合以利用已知條件,結(jié)合f(-1)=f(1)=0知,這個點可選-1。同理,須在(0,1]上取點1,使            之與v配合以利用已知條件。所以,—f(u)-f(v)—≤—f(u)-f(-1)—+—f(v)-f(1)—≤—u+1—+—v-1—=1+u+1-v=2-(v-u)<1

  綜上可知,對任意的u,v∈[-1,1]都有—f(u)-f(v)—≤1.

  (責(zé)任編輯:郭峰)

分享“名師指導(dǎo):高考數(shù)學(xué)抽象函數(shù)求解技巧”到:

58.4K

網(wǎng)站地圖

關(guān)注高考招生官微
獲取更多招生信息
高校招生微信
亚洲中国久久精品无码,国产大屁股视频免费区,一区二区三区国产亚洲综合,国产AV无码专区毛片
亚洲欧美日韩中文不卡 | 亚洲欧美激情国产综合久久久 | 日韩欧美国产综合视频 | 在线人成视频播放午夜福 | 亚洲伊人久久久综合 | 亚洲日韩欧在线观看 |