高二數(shù)學(xué)易錯知識點(diǎn)梳理

2017-01-25 09:01:24 來源:精品學(xué)習(xí)網(wǎng)

   數(shù)學(xué)是人們生活中不可缺少的一部分。以下是為大家整理的高二數(shù)學(xué)易錯知識點(diǎn),希望可以解決您所遇到的相關(guān)問題。

  集合與簡單邏輯

  第一、遺忘空集是任何非空集合的真子集,因此對于集合B,就有B=A、φ≠B、B≠φ三種情況出現(xiàn)。在實(shí)際解題中,如果考生思維不夠縝密,就有可能忽視第三種情況,導(dǎo)致結(jié)果出錯。尤其是在解含有參數(shù)的集合問題時,要充分注意當(dāng)參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況?占且粋特殊集合,考生因思維定式遺忘集合導(dǎo)致結(jié)果出錯或不全面是常見的錯誤,一定要倍加當(dāng)心。

  第二、忽視集合元素的三性集合元素具有確定性、無序性、互異性的特點(diǎn),在三性中,數(shù)互異性對答題的影響最大,尤其是帶有字母參數(shù)的集合,實(shí)際上就隱含著對考生字母參數(shù)掌握程度的要求。在考場答題時,考生可先確定字母參數(shù)的范圍,再一一具體解決。

  第三、四種命題結(jié)構(gòu)不明若原命題為“若 A則B”,則逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里將會出現(xiàn)兩組等價的命題:“原命題和它的逆否命題等價”,“否命題與逆命題等價”。考生在遇到“由某一個命題寫出其他形式命題”的題型時,要首先明確四種命題的結(jié)構(gòu)以及它們之間的等價關(guān)系。

  在否定一個命題時,要記住“全稱命題的否定是特稱命題,特稱命題的否定是全稱命題”的規(guī)律。如對“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,不是“a ,b都是奇數(shù)”。

  第四、充分必要條件顛倒兩個條件A與B,若A=>B成立,則A是B的充分條件,B是A的必要條件;若B=>A成立,則A是B的必要條件,B是A的充分條件;若A<=>B,則AB互為充分必要條件?忌诮膺@類題時最容易出錯的點(diǎn)就是顛倒了充分性與必要性,一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。

  第五、邏輯聯(lián)結(jié)詞理解不準(zhǔn)確

  在判斷含邏輯聯(lián)結(jié)詞的命題時,考生很容易因理解不準(zhǔn)確而出錯。小編在這里給出一些常用的判斷方法,希望同學(xué)們牢牢記住并加以運(yùn)用。

  p∨q真<=>p真或q真,p∨q假<=>p假且q假(概括為一真即真);

  p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);

  ┐p真<=>p假,┐p假<=>p真(概括為一真一假)。

  函數(shù)與導(dǎo)數(shù)

  第一、求函數(shù)定義域題忽視細(xì)節(jié)函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,考生想要在考場上準(zhǔn)確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。

  在求一般函數(shù)定義域時,要注意以下幾點(diǎn):分母不為0;偶次被開放式非負(fù);真數(shù)大于0以及0的0次冪無意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時千萬別忘了這一點(diǎn)。復(fù)合函數(shù)要注意外層函數(shù)的定義域由內(nèi)層函數(shù)的值域決定。

  第二、帶絕對值的函數(shù)單調(diào)性判斷錯誤帶絕對值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),判斷分段函數(shù)的單調(diào)性有兩種方法:第一,在各個段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,然后對各個段上的單調(diào)區(qū)間進(jìn)行整合;第二,畫出這個分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)能夠進(jìn)行直觀的判斷。函數(shù)題離不開函數(shù)圖象,而函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),考生在解答函數(shù)題時,要第一時間在腦海中畫出函數(shù)圖象,從圖象上分析問題,解決問題。

  對于函數(shù)不同的單調(diào)遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  第三、求函數(shù)奇偶性的常見錯誤求函數(shù)奇偶性類的題最常見的錯誤有求錯函數(shù)定義域或忽視函數(shù)定義域,對函數(shù)具有奇偶性的前提條件不清,對分段函數(shù)奇偶性判斷方法不當(dāng)?shù)鹊取E袛嗪瘮?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對稱,如果不具備這個條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷。

  在用定義進(jìn)行判斷時,要注意自變量在定義域區(qū)間內(nèi)的任意性。

  第四、抽象函數(shù)推理不嚴(yán)謹(jǐn)很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同“特征”而設(shè)計(jì)的,在解答此類問題時,考生可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)。多用特殊賦值法,通過特殊賦可以找到函數(shù)的不變性質(zhì),這往往是問題的突破口。

  抽象函數(shù)性質(zhì)的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴(yán)謹(jǐn)性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。

  第五、函數(shù)零點(diǎn)定理使用不當(dāng)若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)<0。那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0。這個c也可以是方程f(c)=0的根,稱之為函數(shù)的零點(diǎn)定理,分為“變號零點(diǎn)”和“不變號零點(diǎn)”,而對于“不變號零點(diǎn)”,函數(shù)的零點(diǎn)定理是“無能為力”的,在解決函數(shù)的零點(diǎn)時,考生需格外注意這類問題。

  第六、混淆兩類切線曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個點(diǎn)的切線是指過這個點(diǎn)的曲線的所有切線,這個點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個點(diǎn)的切線可能不止一條。

  因此,考生在求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。

  第七、混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系一個函數(shù)在某個區(qū)間上是增函數(shù)的這類題型,如果考生認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,很容易就會出錯。

  解答函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時一定要注意,一個函數(shù)的導(dǎo)函數(shù)在某個區(qū)間上單調(diào)遞增(減)的充要條件是這個函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。

  第八、導(dǎo)數(shù)與極值關(guān)系不清考生在使用導(dǎo)數(shù)求函數(shù)極值類問題時,容易出現(xiàn)的錯誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),卻沒有對這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn),往往就會出錯,出錯原因就是考生對導(dǎo)數(shù)與極值關(guān)系沒搞清楚。可導(dǎo)函數(shù)在一個點(diǎn)處的導(dǎo)函數(shù)值為零只是這個函數(shù)在此點(diǎn)處取到極值的必要條件,小編在此提醒廣大考生,在使用導(dǎo)數(shù)求函數(shù)極值時,一定要對極值點(diǎn)進(jìn)行仔細(xì)檢查。

  數(shù)列

  第一、基本公式用錯等差數(shù)列的首項(xiàng)為a1、公差為d,則其通項(xiàng)公式an=a1+(n-1)d,前n項(xiàng)和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;

  等比數(shù)列的首項(xiàng)為a1、公比為q,則其通項(xiàng)公式an=a1pn-1,當(dāng)公比q≠1時,前n項(xiàng)和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當(dāng)公比q=1時,前n項(xiàng)和公式Sn=na1。

  在數(shù)列的基礎(chǔ)題中,等差、等比數(shù)列公式是解題的根本,一旦用錯了公式,解題也失去了方向。

  第二、an,Sn關(guān)系不清致誤在數(shù)列題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在著關(guān)系。這個關(guān)系對任意數(shù)列都是成立的,但要注意的是關(guān)系式分段。在n=1和n≥2時,關(guān)系式具有完全不同的表現(xiàn)形式,這也是考生答題過程中經(jīng)常出錯的點(diǎn),在使用關(guān)系式時,要牢牢記住其“分段”的特點(diǎn)。

  當(dāng)題目中給出了數(shù)列{an}的an與Sn之間的關(guān)系時,這兩者之間可以進(jìn)行相互轉(zhuǎn)換,知道了an的具體表達(dá)式,就可以通過數(shù)列求和的方法求出Sn;知道了Sn,也可以求出an。在答題時,一定要體會這種轉(zhuǎn)換的相互性。

  第三、等差、等比數(shù)列性質(zhì)理解錯誤等差數(shù)列的前n項(xiàng)和在公差不為0時是關(guān)于n的常數(shù)項(xiàng)為0的二次函數(shù)。一般來說,有結(jié)論“若數(shù)列{an}的前N項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。

  解答此類題時,要求考生全面考慮問題,考慮各種可能性,認(rèn)為正確的就給予證明,不正確就舉出反例駁斥。等比數(shù)列中,公比等于-1是特殊情況,在解決相關(guān)題型問題時值得注意。

  第四、數(shù)列中最值錯誤數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)的函數(shù),考生要善于從函數(shù)的觀點(diǎn)認(rèn)識和理解數(shù)列問題。但是很多同學(xué)在答題時容易忽視n為正整數(shù)的特點(diǎn),或即使考慮了n為正整數(shù),但對于n取何值能夠取到最值求解時出錯。

  在正整數(shù)n的二次函數(shù)中,其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸遠(yuǎn)近而定。

  第五、錯位相減求和時項(xiàng)數(shù)處理不當(dāng)錯位相減求和法適用于“數(shù)列是由一個等差數(shù)列和一個等比數(shù)列對應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和”的題型。設(shè)和式為Sn,在和式兩端同時乘以等比數(shù)列的公比得到另一個和式,兩個和式錯一位相減,得到的和式要分成三部分:原來數(shù)列的第一項(xiàng);一個等比數(shù)列的前(n-1)項(xiàng)的和以及原來數(shù)列的第n項(xiàng)乘以公比后在作差時出現(xiàn)的。

  考生在用錯位相減法求數(shù)列的和時,一定要注意處理好這三個部分,否則很容易就會出錯。

  最后,希望育路小編整理的高二數(shù)學(xué)易錯知識點(diǎn)對您有所幫助,祝同學(xué)們學(xué)習(xí)進(jìn)步。

  (責(zé)任編輯:彭海芝)

分享“高二數(shù)學(xué)易錯知識點(diǎn)梳理”到:

58.4K

網(wǎng)站地圖

關(guān)注高考招生官微
獲取更多招生信息
高校招生微信
亚洲中国久久精品无码,国产大屁股视频免费区,一区二区三区国产亚洲综合,国产AV无码专区毛片
最新色福利国产精品亚洲一区 | 五月婷婷之综合缴情 | 久久婷婷色综合网站 | 亚洲一区二区在线观看蜜桃 | 亚洲欧洲非洲在线观看 | 香蕉在线一本大道 |