備戰國家公務員:揭秘九年數字推理命題規律
來源:京佳公務員發布時間:2008-09-24 [an error occurred while processing this directive]
三、九年國考冪數列真題詳解:
1. C。通過分析得知:1是1的4次方,8是2的3次方,9是3的2次方,4是4的1次方,由此推知,空缺項應為5的0次方即1,且6的-1次方為1/6,符合推理。
2. D。此題是立方數列的變式,其中:0等于1的3次方減1,9等于2的3次方加1,26等于3的3次方減1,65等于4的3次方加1,124等于5的3次方減1,由此可以推知下一項應:6的3次方加1,即217。
3. C。數列各項依次是:1的1次方,2的2次方,3的3次方,(4的4次方),5的5次方。
4. B。該數列后一項減去前一項,可得一新數列:1,4,9,16,(25);新數列是一個平方數列,新數列各項依次是:1的2次方,2的2次方,3的2次方,4的2次方,5的2次方;還原之后()里就是:25+31=56。
5. A。這是一道冪數列。數列各項依次可寫為:1的2次方,2的2次方,4的2次方,7的2次方,11的2次方;其中新數列1,2,4,7,11是一個二級等差數列,可以推知()里應為16的2次方,即256。
6. C。這是一道平方數列的變式。數列各項依次是:1的2次方加1,2的2次方減1,3的2次方加1,4的2次方減1,5的2次方加1,因此()里應為:6的2次方減1,即35。
7. C。這是一道立方數列的變式。數列各項依次是:1的3次方加0,2的3次方加2,3的3次方加4,4的3次方加6,5的3次方加8,因此()里應為:6的3次方加10,即226。
8. A。這是一道冪數列題目。該題數列從第二項開始,每項自身的平方減去前一項的差等于,下一項,即3=2的平方-1,7=3的平方-2,46=7的平方-3,因此()里應為:46的平方-7,即2109。
9. B。這是一道冪數列題目。原數列各項依次可化為:3的3次方,4的2次方,5的1次方,(6的0次方),7的-1次方,因此()里應為1。
10. B。本題規律為:前一項的立方減1等于后一項,所以()里應為:-2的3次方減1,即-9。
11. B。這是一道冪數列題目。原數列各項依次可化為:1的6次方,2的5次方,3的4次方,4的3次方,5的2次方,(6的1次方),7的0次方,因此()里應為6。
12. D。數列各項依次可化成:-2×(1的3次方),-1×(2的3次方),0×(3的3次方),1×(4的3次方),因此()里應為:2×(5的3次方),即250。
13. B。本題規律為:[3的平方+(2×2)]=13,[13的平方+(2×3)]=175,因此()里應為:175的平方+(2×13),即30651。
14——16(同11——13)
17. D。本題規律為:(第二項-第一項)的平方=第三項,所以()里應為:(1-9)的平方,即64。
18. C。此題是立方數列的變式,其中:0等于1的3次方減1,9等于2的3次方加1,26等于3的3次方減1,65等于4的3次方加1,124等于5的3次方減1,由此可以推知下一項應:6的3次方加1,即217。
19. A。數列各項依次可化成:0的3次方加0,1的3次方加1,2的3次方加2,3的3次方加3,所以()里應為:4的3次方加4,即68。
20. D。這是一道冪數列變形題。題干中數列的每兩項之和是:121,100,81,64,49,分別是:11、10、9、8、7的平方。所以()里就是7的平方-29,即20。
21. C。這是一道冪數列的變形題。題干中數列各項分別是:3的平方加5,5的平方減5,7的平方加5,9的平方減5,所以()里就是11的平方加5,即126。
【責任編輯:育路編輯 糾錯】